DATA SHEET

Product Name Complete Pb-Free Thick Film Chip Resistors

Part Name PF Series

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China

Tel	$+8651257631411 / 22 / 33$
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1．Scope

1．1 This datasheet is the characteristics of Complete Pb －Free Thick Film Chip Resistors manufactured by UNI－ROYAL
1．2 Total Lead－Free in Whole resistor body
1．3 Reduction of assembly costs and matching with placement machine
1．4 Suitable for both wave \＆re－flow soldering

2．Part No．System

Part No．includes 14 codes shown as below：
$2.11^{\text {st }} \sim 4^{\text {th }}$ codes：Part name．E．g．：PF0A，PF01，PF02，PF03，PF05，PF06，PF07，PF11，PF10，PF12
$2.25^{\text {th }} \sim 6^{\text {th }}$ codes：Power rating．

E．g．：W＝Normal Size	$" 1 \sim G "=" 1 \sim 16 "$									
Wattage	$1 / 32$	$3 / 4$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 8$	$1 / 10$	$1 / 16$	$1 / 20$	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	$1 W$

If power rating is equal or lower than 1 watt， $5^{\text {th }}$ code would be＂W＂and $6^{\text {th }}$ code would be a number or letter．

$$
\text { E.g.: } \mathrm{WA}=1 / 10 \mathrm{~W}
$$

$\mathrm{W} 4=1 / 4 \mathrm{~W}$
$\mathrm{F}= \pm 1 \%$
$\mathrm{G}= \pm 2 \%$
$\mathrm{J}= \pm 5 \%$
$\mathrm{K}= \pm 10 \%$
$2.37^{\text {th }}$ code：Tolerance．E．g．： $\mathrm{D}= \pm 0.5 \%$
$2.48^{\text {th }} \sim 11^{\text {th }}$ codes：Resistance Value．
2．4．1 If value belongs to standard value of E－ 24 series，the $8^{\text {th }}$ code is zero， $9^{\text {th }} \sim 10^{\text {th }}$ codes are the significant figures of resistance value，and the $11^{\text {th }}$ code is the power of ten．
2．4．2 If value belongs to standard value of E－96 series，the $8^{\text {th }} \sim 10^{\text {th }}$ codes are the significant figures of resistance value，and the $11^{\text {th }}$ code is the power of ten．
2．4．311 ${ }^{\text {th }}$ codes listed as following：

$$
0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{5} \quad 6=10^{6} \quad \mathrm{~J}=10^{-1} \quad \mathrm{~K}=10^{-2} \quad \mathrm{~L}=10^{-3} \quad \mathrm{M}=10^{-4}
$$

$2.5 \quad 12^{\text {th }} \sim 14^{\text {th }}$ codes．
2．5．1 $12^{\text {th }}$ code：Packaging Type．E．g．： $\mathrm{C}=$ Bulk $\quad \mathrm{T}=$ Tape／Reel
2．5．2 $13^{\text {th }}$ code：Standard Packing Quantity．
$\begin{array}{cccc}4=4,000 \mathrm{pcs} & 5=5,000 \mathrm{pcs} & \mathrm{C}=10,000 \mathrm{pcs} & \mathrm{D}=20,000 \mathrm{pcs} \\ \text { Chip Product：} & \mathrm{BD}=\mathrm{B} / \mathrm{B}-20000 \mathrm{pcs} & \mathrm{TC}=\mathrm{T} / \mathrm{R}-10000 \mathrm{pcs} & \mathrm{E}=15,000 \mathrm{pcs} \\ \end{array}$
2．5．3 $14^{\text {th }}$ code：Special features．
$\mathrm{E}=$ Environmental Protection，Lead Free，or Standard type.

3．Ordering Procedure

（Example：PF02 1／16W $\pm 5 \%$ 2．2 $\mathbf{T}^{2} / \mathrm{R}-10000$ ）

4．Marking

4．1 For PF0A，PF02 size．Due to the very small size of the resistor＇s body，there is no marking on the body．

4．2 Normally，the making of $0 \Omega \mathrm{PF} 03,0 \Omega \mathrm{PF} 05$ ，
0Ω PF06， $0 \Omega \mathrm{PF} 07,0 \Omega \mathrm{PF} 11,0 \Omega \mathrm{PF} 10,0 \Omega \mathrm{PF} 12$ ， resistors as following
$4.3 \pm 5 \%$ tolerance products（E－24 series）：
3 codes．
$1^{\text {st }} \sim 2^{\text {nd }}$ codes are the significant figures of resistance value， and the rest code is the power of ten．
$4.4 \pm 1 \%$ tolerance products（E－96 series）：
4 codes．
$1^{\text {st }} \sim 3^{\text {rd }}$ codes are the significant figures of resistance value， and the rest code is the power of ten．
Letter＂R＂in mark means decimal point．

$$
0 \rightarrow 0 \Omega
$$

$$
333 \rightarrow 33 \mathrm{~K} \Omega
$$

$2701 \rightarrow 2.7 \mathrm{~K} \Omega$

5．Dimension

Type	Dimension（mm）				
	\mathbf{L}	\mathbf{W}	\mathbf{H}	\mathbf{A}	\mathbf{B}
PF0A（01005）	0.40 ± 0.02	0.20 ± 0.02	0.13 ± 0.02	0.10 ± 0.05	0.10 ± 0.03
PF01（0201）	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.10 ± 0.05	0.15 ± 0.05
PF02（0402）	1.00 ± 0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
PF03（0603）	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20
PF05（0805）	2.00 ± 0.15	$1.25+0.15 /-0.10$	0.55 ± 0.10	0.40 ± 0.20	0.40 ± 0.20
PF06（1206）	3.10 ± 0.15	$1.55+0.15 /-0.10$	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20
PF07（1210）	3.10 ± 0.10	2.60 ± 0.20	0.55 ± 0.10	0.50 ± 0.25	0.50 ± 0.20
PF11（1812）	4.50 ± 0.20	3.20 ± 0.20	0.55 ± 0.20	0.50 ± 0.20	0.50 ± 0.20
PF10（2010）	5.00 ± 0.10	2.50 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20
PF12（2512）	6.35 ± 0.10	3.20 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20

6．Resistance Range

Type	Power Rating at $70^{\circ} \mathrm{C}$	Max． Working Voltage	Max． Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max． Overload Current of Jumper	Resistance Range 1%	Resistance Range 5%	Operating Temperature
PF0A	$1 / 32 \mathrm{~W}$	15 V	30 V	--	$<50 \mathrm{~m} \Omega$	0.5 A	1 A	$10 \Omega \sim 10 \mathrm{M} \Omega$	$1 \Omega \sim 10 \mathrm{M} \Omega$	$-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$

7．Soldering pad size recommended

Type	Dimension（mm）			
	A	B	C	D
PF0A	0.14 ± 0.03	0.2 ± 0.03	0.2 ± 0.03	0.54 ± 0.03
PF01	0.25 ± 0.15	0.225 ± 0.15	0.3 ± 0.03	1.0 ± 0.05
PF02	0.50 ± 0.05	0.45 ± 0.05	0.5 ± 0.05	1.4 ± 0.05
PF03	0.8 ± 0.05	0.65 ± 0.05	0.8 ± 0.05	2.1 ± 0.05
PF05	1.0 ± 0.1	1.0 ± 0.1	1.3 ± 0.1	3.0 ± 0.1
PF06	2.0 ± 0.1	1.1 ± 0.1	1.6 ± 0.1	4.2 ± 0.1
PF07	2.0 ± 0.1	1.1 ± 0.1	2.6 ± 0.1	4.2 ± 0.1
PF10	3.6 ± 0.1	1.3 ± 0.1	2.6 ± 0.1	6.2 ± 0.1
PF11	3.0 ± 0.1	1.4 ± 0.1	3.3 ± 0.1	5.8 ± 0.1
PF12	4.9 ± 0.1	1.6 ± 0.1	3.3 ± 0.1	8.1 ± 0.1

8．Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to $155^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$ ． It is constant between -55 to $70^{\circ} \mathrm{C}$ ，and derate to zero when temperature rise from 70 to $155^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$ ． Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS）alternating－current（AC）continuous working voltage at commercial－line frequency and waveform corresponding to the power rating，as determined from the following formula：
 $\mathrm{RCWV}=\sqrt{P \times \mathrm{R}}$
Remark：RCWV：Rating Continuous Working Voltage（Volt．）P：power rating（Watt）R：nominal resistance（ Ω ） In no case，the rated DC or RMS AC continuous working voltage must be greater than the applicable maximum value． The overload voltage is 2.5 times RCWV or Max．Overload voltage whichever is lower．

9．Structure

10．Performance Specification

＊Dielectric withstanding voltage	No evidence of flashover mechanical damage，arcing or insulation breaks down．		4．7 Resistors shall be clamped in the trough of a $90^{\circ} \mathrm{C}$ metallic v－ block and shall be tested at ac potential respectively specified in the given list of each product type for 60－70 seconds．
©＊Solderability	Coverage must be over 95\％．		4．17 The area covered with a new，smooth，clean，shiny and continuous surface free from concentrated pinholes．Temperature of solder： $245 \pm 3^{\circ} \mathrm{C}$ ；Dwell time in solder： $2 \sim 3$ seconds．
© Rapid change of temperature	$\pm 1 \%$	$\pm(0.5 \%+0.05 \Omega)$	4.1930 min at lower limit temperature and 30 min at upper limit temperature， 100 cycles．
	$\pm 5 \%$	$\pm(1.0 \%+0.05 \Omega)$	
	PF0A	$\pm(1.0 \%+0.05 \Omega)$	
© Soldering heat	$\pm(1.0 \%+0.05 \Omega)$		4．18 Dip the resistor into a solder bath having a temperature of $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and hold it for 10 ± 1 seconds．
Terminal bending	$\pm(1.0 \%+0.05 \Omega)$		4．33 Twist of test board： $\mathrm{Y} / \mathrm{X}=3 / 90 \mathrm{~mm}$ for 60Seconds
＊Insulation resistance	$\geq 1,000 \mathrm{M} \Omega$		4．6 The measuring voltage shall be ，measured with a direct voltage of $(100 \pm 15) \mathrm{V}$ or a voltage equal to the dielectric withstanding voltage．，and apply for 1 min ．
$\begin{aligned} & \text { © Humidity } \\ & \text { (steady state) } \end{aligned}$	$\pm 1 \%$	$\pm(0.5 \%+0.1 \Omega)$	4．24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $90-95 \%$ relative humidity．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
	PF0A	$\pm(3.0 \%+0.1 \Omega)$	
©＊Load life in humidity	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	7．9 Resistance change after 1,000 hours（ 1.5 hours＂ON＂， 0.5 hour ＂OFF＂）at RCWV in a humidity chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
	PF0A	$\pm(3.0 \%+0.1 \Omega)$	
	＊$<50 \mathrm{~m} \Omega$		Apply to rated current for 0Ω
（ ${ }^{\text {＊Load life }}$	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	4．25．1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours＂ON＂， 0.5 hour＂OFF＂at $70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
	PF0A	$\pm(3.0 \%+0.1 \Omega)$	
	＊$<50 \mathrm{~m} \Omega$		Apply to rated current for 0Ω
©＊Low Temperature Storage	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	4．23．4 Lower limit temperature，for 2 H ．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
	PF0A	$\pm(3.0 \%+0.1 \Omega)$	
	＊$<50 \mathrm{~m} \Omega$		Apply to rated current for 0Ω
©＊High Temperature Exposure	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	4．23．2 Upper limit temperature，for 1000 H ．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
	PF0A	$\pm(3.0 \%+0.1 \Omega)$	
	＊$<50 \mathrm{~m} \Omega$		Apply to rated current for 0Ω
（ ${ }^{\text {＊Leaching }}$	No visible damage		J－STD－002 Test D Samples completely immersed for 30 sec in solder bath at $260^{\circ} \mathrm{C}$

The resistors of 0Ω only can do the characteristic noted of＊
The resistors of 01005 \＆ 0201 only can do the characteristic noted of ©

11．Soldering Condition

（This is for recommendation，please customer perform adjustment according to actual application）
11．1 Recommend Reflow Soldering Profile ：（solder ： $\mathrm{Sn} 96.5 / \mathrm{Ag} 3 / \mathrm{Cu} 0.5$ ）

Profile Feature	Lead $(\mathrm{Pb})-\mathrm{Free}$ solder
Preheat： Temperature Min $\left(\mathrm{Ts}_{\text {min }}\right)$	$150^{\circ} \mathrm{C}$
Temperature Max $\left(\mathrm{Ts}_{\text {max }}\right)$ Time $\left(\mathrm{Ts}_{\text {min }}\right.$ to $\left.\mathrm{Ts}_{\text {max }}\right)(\mathrm{ts})$	$200^{\circ} \mathrm{C}$
Average ramp－up rate： （Ts max to Tp）	$60-120$ seconds
Time maintained above ： Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$ Time $\left(\mathrm{t}_{\mathrm{L}}\right)$	$3{ }^{\circ} \mathrm{C} /$ second max．
Peak Temperature（Tp）	$217^{\circ} \mathrm{C}$
Time within $+0{ }^{\circ} \mathrm{C}$ of actual peak Temperature $(\mathrm{tpp})^{2}$	$260^{\circ} \mathrm{C}$
Ramp－own Rate	10 seconds
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	$6{ }^{\circ} \mathrm{C} /$ second max．

Allowed Re－flow times ： 2 times
Remark ：To avoid discoloration phenomena of chip on terminal electrodes，please use N 2 Re －flow furnace ．
11．2 Recommend Wave Soldering Profile ：（Apply to 0603 and above size）

12．Packing

12．1 Dimension of Paper Taping ：（Unit：mm）

Type	A	B	C ± 0.05	$\Phi \mathrm{D}_{-0}^{+0.1}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T
PF0A	0.24 ± 0.05	0.45 ± 0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.40 ± 0.1
PF01	0.40 ± 0.05	0.70 ± 0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.42 ± 0.1
PF02	0.65 ± 0.10	1.20 ± 0.10	2.00	1.50	1.75	3.50	4.00	8.00	0.42 ± 0.05

Type	A ± 0.2	B ± 0.2	C ± 0.05	$\Phi \mathrm{D}_{-0}^{+0.1}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ± 0.1
PF03	1.10	1.90	2.00	1.50	1.75	3.50	4.00	8.00	0.67
PF05	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF07	2.80	3.50	2.00	1.50	1.75	3.50	4.00	8.00	0.75

12．2 Dimension of plastic taping：（Unit：mm）

Type	A ± 0.2	B ± 0.2	C ± 0.05	$\Phi \mathrm{D}_{-0}^{+0.1}$	$\Phi \mathrm{D}_{-0}^{+0.25}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ± 0.1
PF10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF11	3.50	4.80	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

12．3 Dimension of Reel：（Unit：mm）

Type	Taping	Qty／Reel	A ± 0.5	B ± 0.5	C ± 0.5	D ± 1	M ± 2	W ± 1
PF0A	Paper	$20,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF01	Paper	$15,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF02	Paper	$10,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF03	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF05	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF06	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF07	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
PF10	Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8
PF11	Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8
PF12	Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8

13．Note

13．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to $75 \% \mathrm{RH}$ ．
Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
13．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
13．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ ，etc．

14．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	$1 \sim 8$	Mar．20，2018	Haiyan Chen	Nana Chen
2	Modify PF01 packing quantity	8	Jun．06，2018	Haiyan Chen	Nana Chen
3	Modify characteristic	$4 \sim 5$	Feb．14，2019	Haiyan Chen	Yuhua Xu
4	Modify the High Temperature Exposure conditions	7	July．29，2019	Haiyan Chen	Yuhua Xu
5	Modify the reflow curve and add the wave soldering curve	6	Haiyan Chen	Yuhua Xu	

© Uniroyal Electronics Global Co．，Ltd．All rights reserved．Specification herein will be changed at any time without prior notice．

